Статья про реализацию модели безопасности от Дмитрия Садовникова, исследовательский центр Positive Research
Linux Security Modules (LSM) — фреймворк, добавляющий в Linux поддержку различных моделей безопасности. LSM является частью ядра начиная с Linux версии 2.6. На данный момент в официальном ядре «обитают» модули безопасности SELinux, AppArmor, Tomoyo и Smack.Работают модули параллельно с «родной» моделью безопасности Linux — избирательным управлением доступом (Discretionary Access Control, DAC). Проверки LSM вызываются на действия, разрешенные DAC.
Применять механизм LSM можно по-разному. В большинстве случаев это добавление мандатного управления доступом (как, например, в случае с SELinux). Кроме того, можно придумать собственную модель безопасности, реализовать ее в виде модуля и легко внедрить, используя фреймворк. Рассмотрим для примера реализацию модуля, который будет давать права на действия в системе при наличии особого USB-устройства.
Поглядим на схему и попытаемся разобраться, как работает хук LSM (на примере системного вызова open).

Ничего сложного. Главная задача LSM — предоставить модулям безопасности механизм для контроля доступа к объектам ядра (хуки вставлены в ядерный код прямо перед обращениями к объектам). Перед обращением ядра к внутреннему объекту будет обязательно вызвана функция проверки, предоставленная LSM.
Другим словами, LSM дает модулям возможность ответить на вопрос: «Может ли субъект S произвести действие OP над внутренним объектом ядра OBJ?»
Это — очень здорово. Это не sys_call_table хукать по самые указатели.
Разумно для начала написать заготовку модуля безопасности. Он будет очень скромный и будет во всем соглашаться с DAC. Необходимые нам исходники лежат в каталоге security среди исходников ядра.
Копаем исходники
Идем в include/linux/security.h (у меня исходники ядра версии 2.6.39.4). Самое важное здесь – могучая структура security_ops.Вот её фрагмент:
struct security_operations 
{ 
char name[SECURITY_NAME_MAX + 1]; 
int (*ptrace_access_check) (struct task_struct *child, unsigned int 
mode); 
int (*ptrace_traceme) (struct task_struct *parent); 
int (*capget) (struct task_struct *target, 
kernel_cap_t *effective, 
kernel_cap_t *inheritable, kernel_cap_t *permitted); 
… 
};
Это список заранее определенных и документированных callback-функций, которые доступны модулю безопасности для выполнения проверок. По умолчанию эти функции в большинстве своем возвращают 0, тем самым разрешая любые действия. Но некоторые используют модуль безопасности POSIX. Это функции Common Capabilities, с ними можно ознакомиться в файле security/commoncap.c.
Нам в данном случае важна следующая функция из include/linux/security.c:
/** 
* register_security – регистрирует модуль безопасности в ядре. 
* @ops: указатель на структуру security_options, которая будет 
* использоваться. 
* 
* This function allows a security module to register itself with the 
* kernel security subsystem. Some rudimentary checking is done on 
the @ops 
* value passed to this function. You'll need to check first if your 
LSM 
* is allowed to register its @ops by calling security_module_enable 
(@ops). 
* 
* Если в ядре уже зарегистрирован модуль безопасности, то вернёт 
ошибку. При 
* успехе вернёт 0. 
*/ 
int __init register_security(struct security_operations *ops) 
{ 
if (verify(ops)) 
{ 
printk(KERN_DEBUG "%s could not verify " 
"security_operations structure.\n", __func__); 
return -EINVAL; 
} 
if (security_ops != &default_security_ops) 
return -EAGAIN; 
security_ops = ops; 
return 0; 
}
Пишем заготовку
У меня под рукой дистрибутив BackTrack 5 R1 (версия ядра 2.6.39.4). Взглянем на готовый модуль безопасности, например на SELinux (каталог /security/selinux/). Основной его механизм описан в файле hooks.c. На основе этого файла я создал скелет нового модуля безопасности (чуть позже мы сделаем из него что-нибудь интересное).Монструозную структуру security_ops заполняем указателями на свои функции. Для этого достаточно у всех функции заменить selinux на название своего модуля (PtLSM в моем примере). Редактируем тела всех функций: возвращающие void делаем пустыми, int должны возвращать 0. В результате получился ничего не делающий LSM, разрешающий все, что разрешает «родной» защитный механизм. (Исходный код модуля: pastebin.com/Cst0VVQh).
Небольшое печальное отступление. Начиная с версии 2.6.24, из соображений безопасности ядро перестало экспортировать символы необходимые для написания модулей безопасности в виде загружаемых модулей ядра (Linux Kernel Module, LKM). Например, исчезла из экспорта функция register_security, которая позволяет зарегистрировать модуль и его хуки. Поэтому будем собирать ядро с нашим модулем.
Создаем каталог с именем модуля PtLSM: /usr/src/linux-2.6.39.4/security/ptlsm/.
Для сборки модуля выполняем следующие действия.
1. Создаем файл Makefile:
obj-m := ptlsm.o
2. Создаем файл Kconfig:
config SECURITY_PTLSM 
bool «Positive Protection» 
default n 
help 
This module does nothing in a positive kind of way. 
If you are unsure how to answer this question, answer N.
3. Редактируем /security/Makefile и /security/Kconfig — чтобы о новом модуле узнал весь мир. Добавляем строки — как у других модулей.
Мои файлы с добавленным PtLSM: 
1) Makefile — pastebin.com/k7amsnQK 
2) Kconfig — pastebin.com/YDsPBGAz
Далее, в каталоге с исходниками ядра делаем make menuconfig, выбираем PtLSM в пункте «Security Options».

Теперь make, make modules_install, make install. Модуль помещен в ядре, и при помощи утилиты dmesg можно посмотреть, что именно он пишет в лог.
Пишем суперкрутой модуль
Пришло время сделать наш модуль суперкрутым! Пусть модуль запрещает делать что-либо на компьютере, если к нему не подключено USB-устройство с заданными Vendor ID и Product ID (в моем примере это будут ID телефона Galaxy S II).
  Я изменил тело функции ptlsm_inode_create, которая проверяет, имеет ли тот или иной процесс возможность создавать файлы. Если функция нашла «устройство высшей власти», то даст разрешение на выполнение. Аналогичные проверки можно производить с любыми другими действиями.
static int ptlsm_inode_create(struct inode *dir, struct dentry 
*dentry, int mask) 
{ 
if (find_usb_device() != 0) 
{ 
printk(KERN_ALERT "You shall not pass!\n"); 
return -EACCES; 
} 
else { 
printk(KERN_ALERT "Found supreme USB device\n"); 
} 
return 0; 
} Теперь неплохо было бы написать функцию find_usb_device. Она будет анализировать все USB-устройства в системе и отыскивать то, которое имеет нужный ID. Данные о USB-устройствах хранятся в виде деревьев, корни которых называются root hub device. Список всех корней лежит в списке шин usb_bus_list.
static int find_usb_device(void) 
{ 
struct list_head* buslist; 
struct usb_bus* bus; 
int retval = -ENODEV; 
mutex_lock(&usb_bus_list_lock); 
for (buslist = usb_bus_list.next; buslist != &usb_bus_list; 
buslist = buslist->next) 
{ 
bus = container_of(buslist, struct usb_bus, bus_list); 
retval = match_device(bus->root_hub); 
if (retval == 0) 
{ 
break; 
} 
} 
mutex_unlock(&usb_bus_list_lock); 
return retval; 
}
И, наконец, функция match_device, проверяющая Vendor ID и Product ID.
static int match_device(struct usb_device* dev) 
{ 
int retval = -ENODEV; 
int child; 
if ((dev->descriptor.idVendor == vendor_id) && 
(dev->descriptor.idProduct == product_id)) 
{ 
return 0; 
} 
for (child = 0; child < dev->maxchild; ++child) 
{ 
if (dev->children[child]) 
{ 
retval = match_device(dev->children[child]); 
if (retval == 0) 
{ 
return retval; 
} 
} 
} 
return retval; 
} Для работы с USB подключим пару заголовков.
#include 
#include
Повторяем действия для вставки модуля — и покупаем крутой телефон, чтобы пользоваться компьютером.
